-
We present Scalaris, an Erlang implementation of a distributed key/value store. It uses, on top of a structured overlay network, replication for data availability and majority based distributed transactions for data consistency. In combination, this implements the ACID properties on a scalable structured overlay.
-
from houdah
-
This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain
Posted by: amygdala | November 18, 2008
links for 2008-11-17
Posted in del.icio.us
Leave a Reply